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Numerical solutions are presented for steady two-dimensional symmetric flow 
past a parabolic cylinder in a uniform stream parallel to its axis. The solutions 
cover the range R = 0.25 to 00, where R is the Reynolds number based on the 
nose radius of the cylinder. For large R, the calculated skin friction near the nose 
of the cylinder is compared with known theoretical results obtained from second- 
order boundary-layer theory. Some discrepancy is found to exist between the 
present calculations and the second-order theory. For small R, it is possible to 
obtain a reasonably consistent check with a recent theoretical prediction €or the 
limit of the skin friction near the nose of the cylinder as R -+ 0. 

1. Introduction 
One of the main interests in the problem of steady flow past a parabolic cylinder 

in a uniform stream is that it provides a relatively simple application both of 
fist-order boundary-layer theory and of the calculation of higher order correc- 
tions to this theory. Van Dyke (1962a, b)  has considered the general theory in 
the case of flow past leading edges. For a parabolic cylinder there is no singularity 
at  the nose, as in the case of the semi-infinite flat plate, and the flow proceeds 
without separation from stagnation point flow at the nose to Blasius flow farther 
downstream. For this problem Van Dyke ( 1 9 6 4 ~ )  has shown that all the 
second-order effects can be calculated completely. The result is that the correc- 
tion of order R-4 to boundary-layer theory, where R is the Reynolds number 
based on the nose radius of the cylinder, can be calculated explicitly. 

Some check on the theory has been attempted by Wang (1965) for the case of 
the parabolic cylinder by utilizing the semi-analytical method of series truncation 
developed by Van Dyke (1964b, 1965). However, the published results of Wang’s 
calculations for the skin friction near the nose of the cylinder (Davis 1967) are 
not in significantly good agreement with Van Dyke’s ( 1 9 6 4 ~ )  result. A check on 
the second-order theory by means of numerical solutions of the Navier-Stokes 
equations would seem to be appropriate and this is one of the main objectives of 
the present paper. Numerical solutions are obtained using two-dimensional 
finite-difference approximations to the partial differential equations for the 
stream function and vorticity. The Reynolds number range considered is 
R = 0.25 to R = 00. From the results it is possible to obtain an estimate of the 
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second-order correction to the skin friction for large R. This estimate indicates 
some discrepancy with the theoretical result of Van Dyke ( 1 9 6 4 ~ ) .  There is 
also a substantial difference between the results of the present calculations and 
those of Wang (1965) for the lower Reynolds numbers. Good agreement is 
obtained, however, with recent results of Davis (1972). 

Van Dyke (private communication) has recently shown that the limit of the 
skin friction near the nose of a parabolic cylinder as R + 0 can be related to the 
skin friction near the leading edge of a semi-infinite flat plate and has calculated 
an estimate of this limit by utilizing recent results of van de Vooren & Dijkstra 
(1970) and Yoshizawa (1970) for the  flat plate. By assuming the limit given by 
Van Dyke, it is possible to obtain a reasonable check on the present calculations 
for small R. 

2. Basic equations and boundary conditions 
As in the calculations of Wang, parabolic co-ordinates are used since these 

have been shown (Kaplun 1954) to be optimal for the boundary-layer problem. 
If (2 ,  y) are dimensionless Cartesian co-ordinates which are related to the corre- 
sponding dimensional co-ordinates (x*, y*) by the equations x* = Lx, y* = Ly, 

FIGURE 1. Parabolic co-ordinate system. 

where L is the nose radius of the parabola, the dimensionless profile of the 
cylinder is taken as y2 = 2x. Parabolic co-ordinates (E ,  7) are introduced by the 

(1) 
transformation 

The co-ordinates are shown in figure 1. The cylinder is situated at  7 = 1, and 
at any point on its surface we have x = it2. If the flow at large distances is a 

x -++ iy  = & ( C + i q ) 2 .  
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uniform stream U parallel to the positive x direction, we shall suppose that the 
velocity components have been non-dimensionalized with regard to U. Thus if 
$* and [* are the usual dimensional stream function and vorticity, respectively, 
the dimensionless functions $ and 5 are introduced by the equations 

$* = UL$, g* = - UiJL. (2) 

In  the parabolic co-ordinate system, the governing equations derived from the 
Navier-Stokes equations are then 

Here, R = UL/v  is the Reynolds number. Finally, it is convenient to introduce 
boundary-layer quantities, defined by means of the equations 

q = 1 + R-Bq', $ = R-i$', 5 = RtC. ( 5 )  

If these are substituted in (3) and (4) and the primes are suppressed, for con- 

These are the final governing equations. In  the rest of the paper it will be assumed 
that the unprimed quantities in (6) and (7) stand for the primed quantities 
defined by the equations (5). 

The boundary conditions at  the surface of the cylinder are 

$ = a+/aq = 0 when q = 0. (8) 

The condition that the flow reduces to a uniform stream parallel to the positive 
x direction at  large distances gives 

a$pq - 5  as q-+co. (9) 

5 + 0  as 7 - t ~ .  (10) 

$ = [ = O  when c = O .  (11) 

As a consequence of (9) it also follows that 

The flow is assumed to be symmetrical about the axis of x and thus 

For the boundary-layer problem defined by putting R = 00 in (6) and (7), the 
above conditions are sufficient. The initial conditions are given by (11). The 
boundary conditions are given by (8) and (9), and (10) may be utilized as an 
additional condition, if required. 

For any finite value of R, equations (6) and (7) are both elliptic and conditions 
which are valid for large 6 must be specified. The assumption is that the 00w for 
large 6 is governed by the Blasius boundary-layer solution, which implies that 
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f” +ff I‘ = 0, 

with f(0) = f’(0) = 0, f’(c.0) = 1.  

Here, primes denote differentiation with regard to 7. The equation for f(7) is 
the Blasius equation. It can be deduced that f(7) must satisfy this equation if 
(6) and (7) are to be satisfied asymptotically by (12). In  the numerical method of 
solution to be described, in which (6) and (7) are solved as a simultaneous problem, 
a condition for {(c, 7) as 6 + co is also required. The leading term for [ come- 
sponding to the asymptotic Blasius flow is 

In  practice it has been found to be more satisfactory to assume the expression (12) 
and then determine an expression for 5 from (7) by satisfying this equation 
exactly. This yields 

The expression (1  2) is the leading term of the boundary-layer type expansion, 
valid for large (, considered by Van Dyke ( 1 9 6 4 ~ )  and by others (Imai 1957; 
Stewartson 1957; Goldstein 1960; Murray 1965). Similar expressions to (12) and 
(13) have been used by Yoshizawa (1970) as boundary conditions for large 6 
when considering the case of the semi-inkite flat plate by means of numerical 
solutions. A more elaborate treatment of the conditions for large 6 is given by 
van de Vooren & Dijkstra (1970) in their numerical solution of the semi-infinite 
flat plate problem. In the present work the conditions (12) and (13) are used as 
boundary conditions for large <. In  practice they will be applied at  some finite 
value, 6 = Cm, of 6 as a first approximation and the effect on the numerical results 
of increasing Crn will subsequently be studied. Likewise, the conditions (9) and 
(10) are first assumed to be valid on some boundary 7 = qm at large enough dis- 
tance from 7 = 0. It is subsequently found tha,t the imposition of the boundary 
at  the finite distance 6 = Cm is satisfactory, but that the approximation of the 
condition as 7 --f co requires further consideration. This will be described later. 

Numerical approximations to @ and 5 are first obtained at the points of a 
rectangular grid within the finite rectangle bounded by the lines 5 = 0, 6 = .$,, 
7 = 0, 7 = 7rn. Considerable care is necessary in formulating the numerical 
approach. For finite values of R, (6) and (7) give rise to an elliptic boundary- 
value problem. If R = m, (6) is a parabolic equation for the function 5 and the 
boundary-layer problem of solving (6) and (7) is a step-by-step integration in the 
6 direction, starting from the initial conditions (1 1) .  The numerical method must 
be capable of dealing with both the elliptic and parabolic cases. This is achieved 
by using a suitable method of approximating (6) in terms of finite differences. 
This method will be discussed in the next section. 



Steady symmetric viscous flow 805 

3. Numerical method of solution 
Although some of the calculations were carried out using unequal grid sizes 

in the ( and 7 directions, it is simpler to describe the method using equal grid 
sizes in both directions. The extension to unequal grid sizes is obvious. The 
system of numbering a typical set of points on a square grid of side h is indicated 
in figure 2. Central differences are used to approximate the derivatives in (7) at 
the typical point 0, which yields 

R-'$I + $2 + R-l$S + @4 - 2( 1 + R-l) $0 - h2Xo 6 = 0, (14) 

where x = %+(l+R-b#,  

and the subscripts denote local values of the appropriate quantities. Equation 
(14) must be satisfied at  every internal grid point, subject to the boundary con- 
ditions that $ = 0 on both ( = 0 and 7 = 0 and that @ is given by (12) on = tm. 

5 
FIGURE 2. Region of integration and grid structure. 

Equation (14) also holds for all grid points on 7 = qrn in conjunction with the 
condition (9) which, when the derivative is expressed in central differences, gives 
the approximation 

Thus (14) becomes, for points on 7 = yrn, 

$2 = @4+2@0. 

R-l($l + $3) + 2@4- 2( 1 + R-l) @o + %to = 0, (15) 

since c0 = 0 on 7 = qrn, as an approximation to (10). For a given value of c,, at 
each internal grid point, the solution of the set of equations defined by (14) and 
(15) is a standard problem which presents no difficulties. 

The problem of approximating (6) in a manner which is satisfactory for all R 
must now be considered. It is convenient to write 

2~ = a+p7, 2p = a+pg (16) 

The functions h and p can then be calculated approximately from grid values 
of $. For the moment we shall defer consideration of the appropriate finite- 
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difference formulae to be used for this calculation. Several ways of approximating 
(6) by finite differences are possible. If all derivatives of [in (6) are approximated 
by central differences at the typical point 0, the approximation 

(17) 

is obtained. This must be satified at  all internal grid points. The associated 
boundary conditions are that c- = 0 on 5 = 0, and g may also be taken as zero on 
?/ = 7m, as an approximation to (10). On 5 = EvbI,,, cis assumed to be given by (13). 
Finally, the second condition in (8) may be used to give a condition for [ on 
7 = 0. When the typical point 0 of figure 2 is on 7 = 0, the central-difference 
approximation to the condition (a$/a7)o = 0 gives $2 = $4. If this is substituted 
in (14), with @o = 

(R-l- hho) [i  -I- (1 hpo) 6 + (R-l+ hh,) <s + (1 - hp,) f - 2( 1 + R-l) c,, = 0 

= $3 = 0, we obtain 

c-0 = 211.ZW + 53 h21 (18) 

and thus boundary values of 6 on 7 = 0 are calculated from values of $ on 7 = h. 
With these boundary conditions and values of A, and ,uo in (17) calculated from 
the solution for $, an approximation to 5 can be found at  each grid point. 

A numerical solution for a given value of R is obtained by solving the sets of 
equations (14), (15) and (17), subject to the stated boundary conditions, by an 
overall iterative procedure. This procedure is repeated until $ and 5 have con- 
verged to limits, within an acceptable tolerance, a t  every internal grid point and 
also at  every boundary grid point at  which they are not known. One of the 
acceleration devices used in the overall procedure is that of successive over-relaxa- 
tion. This is utilized in solving (14) and (15) for $, and also in solving (17) for 5. 
Successive over-relaxation has been generally described by Varga (1962) and by 
Wachspress (1966). It can be divergent if the matrix associated with the equations 
is not diagonally dominant in the sense defined by Varga (1962, p. 23) and, 
indeed, strict diagonal dominance is a sufficient condition for the convergence 
of the point Jacobi and Gauss-Seidel iterative procedures associated with a 
linear system (Varga 1962, p. 73). 

The equations (17), looked on as a linear system in 5, can be written as 

at  every internal grid point ofthe rectangle. The condition for diagonal dominance 
is that 

at  every internal grid point, where the summation applies to the four c, asso- 
ciated with the particular grid point in general, but at  points adjacent to the 
boundaries the one c, which multiplies the boundary value is omitted. Since no 
reversed flow takes place, the functions h and ,u are always positive within the 
rectangle. It is obvious that (20) is satisfied provided that both of the conditions 

AOh G R-1, p0h < 1 (21) 

are satisfied at  every grid point. When they are satisfied, the strict inequality 
in (20) applies at all points adjacent to the boundary and the diagonal dominance 
is therefore strict. 
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In  the numerical calculations it was found to be relatively easy to choose h 
to satisfy the second of (21) within the rectangle, but not the first. The overall 
iterative procedure failed to converge for quite small R, not much greater than 
R = 1, although solutions €or R = 0.25, 0-5 could be obtained satisfactorily. In  
order to obtain solutions for higher values of R, a method similar to that pro- 
posed by Spalding (1967) and later by Greenspan (1968) in studies of the Navier- 
Stokes equations was used, although some extension of these ideas is made, 
following the method suggested by Dennis & Chang (1969). The basic principle 
is to write the usual central-difference approximation to the term ac/ac in (6) 
as a corrected backward difference, thus 

h(ac/a6)0 = & ; o - ~ 3 + c 0 ,  ( 2 2 )  

where ' 0  = 4 ( ~ 1 - 2 ~ 0 + ~ 3 ) -  (23) 

The finite-difference equations (17)  can then be expressed in the alternative form 

R-% + (1 + hp,) c 2  + @-I+ 2hho) Q + (1  - hP0) c 4  

-2(l+R-'+hAO)[, = ZhhoCo. (24) 

A valid approximation to (6) is obtained by neglecting C, in (24), since C,, = O(h2). 
This yields the finite-difference equations 

R-lci + (1 + hpo) c z  + (R-l+ 2hho) Q + (1 - hpo) c 4 -  2( 1 + R-* + hh,) co = 0, (25 )  

and the associated matrix is diagonally dominant provided that only the second 
of (21) is satisfied. This condition does not depend strongly on R and is easily 
satisfied over the rectangle. Thus the overall iterative procedure of solving (25) 
with (14) and (15) was found to converge for all R; in particular, it was possible 
to solve the case R = 00 by this method. 

When R = 03, the terms in R-l in (6) and (7) are zero. Equation (6) is parabolic 
and the whole integration can be performed as a step-by-step integration in the 

direction, since there is no forward influence in the 6 direction in (25 ) ,  (14) and 
(15) in this case, and the numerical solution may be completed along a line of 
constant t, starting with 6 = h, before proceeding to the next. To preserve the 
truly step-by-step nature of the integration it is necessary to express h in (16) 
by a backward-difference approximation. Thus we may take 

2h& = $0 - $4, 4hp0 = $1 - $3 (26) 

as numerical approximations to (16). It is easily verified that with this scheme 
the numerical solution along = h, subject to the initial conditions (1 1), is a 
numerical formulation of the exact Hiemenz stagnation point solution (Schlicht- 
ing 1960, p. 78), i.e. it  gives the numerical functionswhichmultiplythe power of c 
in the Blasius series for $ and 6 when expressed in the parabolic co-ordinate 
system (Van Dyke 1 9 6 4 ~ ) .  Once the solution on 5 = h has been found we can 
proceed to 5 = 2h. The only backward influence is through the term $4 in (26) 
and the term Q in (25), which are both known. 

The boundary-layer case R = 00 suggests how the overall iterations should 
proceed in the general case. The rectangle is swept along lines of constant 6, 
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starting from 5 = h and finishing at ( = tmL-h. The iterations performed by 
Yoshizawa (1970) in the case of the semi-infinite flat plate employ sweeps along 
the lines of constant 7 but, other than this, the procedure adopted here is similar. 
Some of the devices for accelerating convergence which are described in numerical 
studies (e.g. by Kawaguti 1961; Burggraf 1966; Takami & Keller 1969) have been 
employed. In particular, the calculation of boundary values of 5 on 7 = 0 during 
the course of the overall iterations is not done directly from (18) but by an 
averaging process. If an approximation 5'") throughout the region gives rise to 
an approximation $(") by solving (14) and (15) with 5 = <("), the boundary 
values of 5 used in the next iteration are calculated from 

Here, w is a parameter such that 0 < w < 1. The case w = 1 corresponds to direct 
calculation of new boundary values from (18). If this causes divergence of the 
iterations, w is reduced in magnitude until convergence is obtained. Finally, in 
the general case of finite R it is quite convenient to employ the central-difference 

(28) 
formula 

instead of the fist of (26). Actually this was also employed in the case R = co, 
which was simply treated as another case of the general procedure for finite R 
and solved as if it were an elliptic problem. 

Some account must also be taken of the fact that (17) are correct to full central- 
difference accuracy, whereas (25) employ only backward-difference accuracy in 
approximating a</a( and therefore lead to a less accurate solution. The pro- 
cedure described by Dennis & Chang (1969) is adopted. From a first approxima- 
tion which satisfies (25), the correction C, is calculated at  each point. The itera- 
tions are continued using (24) with C,, substituted. Every so often (say, every 
20 or 30 complete iterations) C, is re-calculated from the current solution and the 
whole procedure repeated until convergence. This is similar to the method of 
Fox (1947). It was found to be convergent in every case. In  this way, approxima- 
tions which satisfy (17) were obtained for all R, whereas iterative methods applied 
directly to (17) certainly diverged for R > 1. 

Numerical solutions were obtained for a range of values of R from R = 0.25 
to R = co. The same grids were used for all values of R but, as has been stated, 
unequal grid sizes in the 5 and 7 directions were used in some of the solutions. If 
H denotes the grid size in the 7 direction, solutions were f i s t  obtained taking 
h =1 6' H = &42. The grid size H was taken to be consistent with that used 
(Schlichting 1960, p. 121) in calculating the Blasius functionf(7) which is used 
in (12) and (13) (Schlichting's variable 7 is 4 2  times that used here). A good check 
that H has been properly chosen is given by the fact that the solution of (la), 
(15) and (25) along the line ( = h in the boundary-layer case R = co gives a very 
good comparison with the Hiemenz stagnation point solution. A second solution 
was obtained for each value of R, taking h = +$ and keeping H = &42. 
The change in the solution due to this change in grid size was hardly more than 
1 yo for any value of R. 

4hh0 = @2 - $4 



Xteady symmetric viscous flow 809 

The outer boundary 7 = 7, was taken sufficiently far from 7 = 0 for the func- 
tion f'(7) to have assumed its free-stream value to five decimal places, and the 
position of the boundary g = t, was taken to be consistent with that taken by 
Yoshizawa (1970) in the case of flow past a semi-infinite flat plate. Finally, in 
the overall iterative procedure, convergence was decided by the test M < E ,  

where 

for all E in the range 0 < c < tm, and where r ,  r + 1 are two successive iterates. 
The value of the parameter E was varied to suit different values of R but on the 
whole E was always less than 10-4. 

The effect of varying the positions of both of the boundaries 5 = t, and 
7 = vrn was studied. The position of each boundary was varied independently. 
It was found that for sufficiently large ern ( > 20), the effect of increasing em was 
quite negligible to  the order of accuracy considered. The effect of increasing qm 
was much more significant. It was found that even after considerable increase 
in 7,) the calculated skin friction at the nose of the cylinder was rather higher 
(the maximum discrepancy was of the order of 2%) than that computed by 
Davis (1972). The probable reason is that whereas the vorticity 5 decays expo- 
nentially to zero as 7 -+ CO, the decay to its ultimate value as 7 -+ co of the per- 
turbation stream function Y defined by the equation 

$ = t7+y (29) 

is algebraic (see, for example, the second-order theory of Van Dyke ( 1 9 6 4 ~ ) ) .  
The method of satisfying the boundary condition for @ as 7 + co was therefore 
modified according to the following procedure. 

If 7, is large enough we can put 5 = 0 in (7) for 7 > vnL. We now substitute in 
the resulting equation for $ from (29) and make the transformation 7 = l / z .  
The equation for Y((, z )  in the region 0 < z 6 z,, where z, = l/q,, is 

The work of Van Dyke (1964a) suggests that it is reasonable to expand Y in 
integer powers of z ,  if z is small enough. We therefore take a grid size k = 42, 

in the variable z, so that z = 2k corresponds to 7 = 7,) and replace the derivatives 
in (30) by central-difference expressions a t  grid points along the line z = k. The 
approximation to (30) along this line at a grid point for which 5 = co is then 

where y = 1/(Bh2k2). It may be noticed that the term involving Y(co,O) has 
cancelled, so that the boundary condition for Y at z = 0 does not have to be 
specified. The term in Y(&, 2k) in (31) can be linked to the value of @ at the same 
point 6 = go, 7 = qrn by means of (29). This value of $ is that denoted by $o in 
equation (15) when the typical point 0 of figure 2 is on the line 7 = T , ~ .  

The effect of the grid values Y(to, k) on the solution for 7 6 7, is introduced 
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by replacing the boundary condition (9) by the condition, obtained from (29)) 
that 

The term aY/& in (32) is now replaced by a simple backward difference of Y 
with regard to the z variable at z = z,, and the resulting approximation to the 
right side of (32) is now used to replace the right side of (9) in deriving the equation 
(15) for the function $ along the grid line 7 = qm. Thus, in terms of the grid 
structure in figure 2, the approximation to (32) when the typical point 0 is on 

(33) 
7 = vm gives 

If we eliminate Y(c0, 21%) from (33) using (29) and then eliminate P2 from (14), 
as before, the modified form of (15) becomes 

a$/aq = g - z 2 a Y / a x ,  when 7 = qm. (32) 

$2 = $* + %o - 8hkPxO) 2k)  - v g o 9  k ) ) .  

h?l($l -k $h3) + 2$4 - 2(1 +ad1 -t- 4hk) $0 -k 8hky(&,  k) -k 2h&(1-k 4k%) = 0. (34) 

The two sets of equations (31) and (34)) with Y(co, 2k)  in (31) related to $o 
in (34) by means of (29)) serve to replace the single set (15) as a representation 
of the boundary condition as 7 + co. With this representation the problem is 
solved, effectively, as a two-region problem with $ and a$/@ continuous across 
the interface q = T ~ .  The computation extends over the complete range 7 = 0 
to z = 0. The equations are solved by the following iterative procedure. The term 
involving Y(go, k )  is held fixed in (34) and these equations are solved iteratively 
in conjunction with the appropriate equations in the inner region q < qm for a 
definite number of iterative sweeps of the whole field 7 < qm. This is carried out 
in the manner already described. Values of Y(go, 2k) in (31) are then calculated 
from (29) and held fixed while (31) are solved iteratively along the line z = k until 
convergence is achieved to some prescribed accuracy, The iterations in the 
region q < 7, are then continued with the new Y(go, k) held fixed in (34)) and so 
on until ultimate convergence of the whole sequence of operations is obtained. 
The final calculations according to this scheme were carried out with h = A, 
H = &,I2 and rm = 542.  This latter value gives k = 0.1/.42. It will be seen below 
that the results calculated using this modified scheme are in excellent agreement 
with those obtained by Davis (1972). 

4. Calculated results 
The dimensionless skin friction is cf = 70/(&pu2),  where 70 is the local shearing 

stress, and hence cf = 2C0j,/R*. If  the local Reynolds number R, = Ux*/v is intro- 
duced, it is found that 

(35) Rbf = .42Eo. 

In all these expressions, the subscript 0 refers to values on the cylinder. Near the 
nose of the cylinder c0 has the form co N A<, where A = (ac/-lag)o, and it follows 
that A is the value of (R/8x)&cf at the nose. This quantity has been calculated by 
Wang (1966) and the results for the first truncation of the series truncation method 
used by Wang are given by Davis (1967). Values of A calculated from the present 
solutions are given for the range of R considered in table 1. These results are 
compared with Wang’s results in figure 3, which also shows the results obtained 
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from the second-order boundary-layer theory of Van Dyke ( 1964 a). There 
appears to be a small, but significant, difference in the present results from those of 
Wang, and the comparison with Van Dyke’s theoretical result is not as precise 
as may be expected. The comparison with the recent calculations of Davis (1971) 
is excellent, however. At values of R at which a direct numerical comparison is 
possible (R = 1, 10, 100,103) thedifferenceisnotanywheremore thanabout 0.3 yo. 

R 
0.25 
0.5 
1 
5 

10 
100 

TABLE 1. 

A = (K/:/ag), R A = (a51a5)O 
0.576 108 1.149 
0.598 5 x  108 1.196 
0.627 2.5 x 104 1.218 
0-732 5 x 104 1.222 
0.793 co 1.232 
1.007 - - 

Values of (R/Br)*c, a t  the nose of a parabolic cylinder 

1 .? 

1 .o 

3 
5% 
H 

0.8 
5. 

0.6 

- First-order boundary-layer theory--- 

- 

- 

- 

0.4 I I I I I 

0.1 1 I0 I 02 103 1 o4 I 05 

R 

FIGURE 3. Values of (R/82)*c, at the nose of the cylinder, z = 0; 
-0-, Dennis & Walsh; - - - -, Wang (1965). 

Van Dyke’s second-order theory gives the skin friction in the neighbourhood 
of the nose as 

+R*C, = (1-232588 - 3.033-4) (s/L) + O(s3, R-l), (36) 

where s is the dimensional distance along the cylinder surface, measured from 
the nose. For high R, the coefficient of s/L on the right side should correspond 
approximately with the values of A in table 1. The comparison at  R = 00 is 
satisfactory, but the present values for high R are higher than those given by (36). 
We can attempt an estimate of the coefficient of R-4 from the present results by 

A N a + bR-A. (37) 
writing 
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We take the value a = 1.2326 consistent with the exact Hiemenz solution and 
calculate b from (37) at R = 2-5 x 104 and R = 5 x lo4 using accurately calculated 
values of A = 1.2176 and A = 1.2222, respectively, at  these values of R. We then 
get the two estimates, respectively, of b = - 2.37 and b = - 2.33. An extrapola- 
tion to R = co in R-4 then gives the result b = - 2.21. This type of estimation is 
highly conjectural, however, because i t  must be noted that we obtain the cal- 
culated value a = 1.2320 at R = 00 from the present results, which is lower than 
the exact value. A similar error could exist in the results at  R = 2.5 x lo4 and 
R = 5 x 104 but, even so, the estimate of b could hardly be in error by as much 
as the result (36) indicates. 
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FIGURE 4. Rtc, as a function of t = Ez/ (  1 + t2) over the cylinder surface. 

The skin friction over the surface of the cylinder for various Reynolds numbers 
is plotted against the co-ordinate t = ("(1 + f2) used by Van Dyke (1964a) in 
figure 4. The curve for R = co is compared with the boundary-layer calculations 
of Smith & Clutter (1963) in figure 5. The present values are somewhat higher 
than those of Smith & Clutter as 5 increases; for example, at  f = 2 (t  = 0.8) we 
obtain the value Rkc, = 0.8200 compared with Smith & Clutter's value 
Ric, = 0,8152. Van Dyke (1964a) has noted that, for large f ,  Smith & Clutter's 
results are some 0-2 to 0.3% lower than those of Fannelop (unpublished). In  
any event, there is good mutual agreement between all the results near the nose 
of the cylinder. 

At the low end of the Reynolds number scale, Van Dyke (private communica- 
tion) has shown that the limit of the skin friction near the nose of the cylinder as 
R + 0 can be related to the skin friction at  the leading edge of a semi-infinite flat 
plate. By using the recent estimates of the leading edge skin friction given by 
van de Vooren t Dijkatra (1970) and Yoshizawa (1970) for the semi-inhite flat 
plate, Van Dyke obtains the result 

+Rkf = (0.532 + O(R$)}(s/L) + O(s3/L3) (38) 
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for the skin friction near the nose of the cylinder as R + 0. If we assume 

$R*c~ N (0.532 +BR*) (s/L) (39) 

as R and s both tend to zero, and then estimate B from the result for R = 0.25 in 
table 1, we obtain B = 0.088. The formula (39) then fits the results for R = 0.5 
and 1 in table 1 to about 1 %, giving a consistent check. Van Dyke (private 
communication) has given a further comparison with the present numerical 
results. 

0 0.2 0.4 0.6 0.8 1 .O 
t 

FIGURE 5.  Rh c, as a function of t = t2/( 1 + Ea) over the cylinder surface 
for the case R = to: - , Dennis & Walsh; x , Smith & Clutter (1963). 

The present work has been carried out with the assistance of a grant from the 
National Research Council of Canada. A preliminary account of the results 
(obtained before the modified treatment of the conditions as 7 + co was applied) 
was presented at  the 12th British Theoretical Mechanics Colloquium held at 
the University of East Anglia, Norwich, England from 23-26 March 1970. The 
authors acknowledge helpful comments and criticisms by R. T. Davis and M. Van 
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